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A B S T R A C T

We study how people evaluate and aggregate the attributes of naturalistic choice objects, such as movies and
food items. Our approach applies theories of object representation in semantic memory research to large-scale
crowd-sourced data, to recover multiattribute representations for common choice objects. We then use standard
choice experiments to test the predictive power of various decision rules for weighting and aggregating these
multiattribute representations. Our experiments yield three novel conclusions: 1. Existing multiattribute decision
rules, applied to object representations trained on crowd-sourced data, predict participant choice behavior with
a high degree of accuracy; 2. Contrary to prior work on multiattribute choice, weighted additive decision rules
outperform heuristic rules in out-of-sample predictions; and 3. The best performing decision rules utilize rich
object representations with a large number of underlying attributes. Our results have important implications for
the study of multiattribute choice.

1. Introduction

Most choices that people make on a day-to-day basis can be seen as
involving objects defined on two or more attribute dimensions. These
choices involve trading off the relative values of the component attri-
butes, so as to select the object whose attributes are, overall, the most
desirable (Keeney & Raiffa, 1993). The study of these types of multi-
attribute choices is a key topic of inquiry across numerous fields, where
scholars attempt to develop theories to predict individuals’ multi-
attribute choices, as well as the relationship between these choices and
various psychological, biological, and socio-economic variables (Hastie,
2001; Oppenheimer & Kelso, 2015; Weber & Johnson, 2009).

There is a disconnect between the way in which multiattribute
choices are currently studied, and the way in which these choices are
often made. Nearly all multiattribute choice experiments explicitly
present choice objects and their attributes to participants in a matrix of
numerical quantities (see Ettlin, Bröder, & Henninger, 2015 for a
summary). For example, participants may be given a choice between
two hypothetical phones with each phone being described in terms of
its memory, its processing speed, and its screen size. This choice would
be shown in a simple 3×2 attribute-by-object matrix (e.g. Fig. 1a).
Although some consumer decisions do involve the evaluation of a small
set of explicitly presented and quantified attributes, many other
common decisions – involving, for example, movies to watch or food

items to eat – do not. The objects in these common decisions may be
listed using only their names (without any attribute information), but
the underlying attribute structure is typically very rich and complex
(e.g. Fig. 1b). Decision makers do often have knowledge about these
objects and their underlying attributes, but this knowledge is re-
presented in the decision makers’ minds after having been learnt
through prior experience with the choice domain.

The divergence between the highly stylized stimuli used in current
research and the complex multiattribute objects often involved in real-
world settings is problematic. Choice processes and resulting behaviors
depend greatly on the ways in which attributes and objects are pre-
sented. For example, altering attribute-by-object matrices, by dis-
playing the objects separately rather than side-by-side, can reverse
certain behavioral patterns (Bettman & Kakkar, 1977; Kleinmuntz &
Schkade, 1993). Making some attributes more salient by altering the
order in which they are displayed in the matrices can also have a
powerful effect on behavior (Levav, Heitmann, Herrmann, & Iyengar,
2010; Russo, Medvec, & Meloy, 1996). Similarly, presenting informa-
tion verbally instead of numerically can lead to different decision
strategies and subsequently different choices (Stone & Schkade, 1991).
There is also a well-documented difference between memory-based and
stimuli-based decisions, and decision makers are known to use different
choice processes when retrieving attribute information from memory
vs. when using attribute information presented explicitly during the
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choice task (Lynch, Marmorstein & Weigold, 1988; Lynch & Srull, 1982;
Rottenstreich, Sood & Brenner, 2006). This sensitivity to presentation
and choice format suggests that real-world decisions, which seldom
involve actual attribute-by-object matrices, may be different to the
types of decisions observed in current experimental work. Indeed, some
scholars have suggested that multiattribute choice effects documented
in the laboratory with artificial stimuli do not emerge in more natur-
alistic settings (see, e.g., Frederick, Lee, & Baskin, 2014).

The divergence between experimental research and naturalistic
multiattribute choice also impedes theory development. By using arti-
ficial designs in which the attributes of objects are directly presented to
decision makers, existing theoretical work has largely ignored the role
of object representation. Storing, retrieving, and processing attribute
information about the objects in a given choice problem is a pivotal part
of the decision process, and a complete account of choice requires an
approach that is able to specify the mechanisms involved at this stage in
the decision, as well as the relationship between these mechanisms and
the final outcomes of the decision. Of course a theory of object re-
presentation in multiattribute choice need not be completely novel: It
can adopt existing insights regarding object and concept representation
in semantic memory research, and combine these insights with common
decision rules studied in multiattribute decision research. Such a theory
would not only extend the descriptive scope of decision research, but
would also help integrate two important areas of inquiry in psychology.

However, there is a significant methodological issue involved in
studying multiattribute choice with naturalistic objects. Computational
and mathematical theories of choice can make predictions and be tested
only when underlying objects and attributes are quantified. However,
unlike the attributes of object used in existing choice experiment (e.g.,
those in Fig. 1a), the attribute of common choice objects (e.g., those in
Fig. 1b) are not directly observable. Although participants may know
the underlying attributes of common choice objects, and use these at-
tributes to make every-day multiattribute decisions, researchers do not
currently have a way of uncovering and quantifying the precise attri-
bute compositions of objects. Thus in addition to developing a theory of
object representation in everyday multiattribute choice, it is also ne-
cessary to develop practical techniques to apply this theory to actual
choice data obtained from experimental and field settings.

The goal of this paper is to address these theoretical and metho-
dological challenges. We begin by examining how common choice ob-
jects can be represented. Here we build upon insights in semantic
memory research, which suggest that people use latent attribute spaces

for representing common non-choice objects and concepts (e.g.,
Landauer & Dumais, 1997; Shepard, 1962). We argue that these insights
can be extended to everyday multiattribute choice, with decision ma-
kers using the distribution of observable features across objects to ob-
tain a large number of latent attributes for representing the choice
objects in the environment. Furthermore, we propose that it is these
latent attributes that are evaluated and aggregated during the decision
process. This evaluation and aggregation can be modelled using the
types of existing decision rules already used to describe choice behavior
in decision making research (e.g. Gigerenzer & Gaissmaier, 2011;
Keeney & Raiffa, 1993; Payne, Bettman, & Johnson, 1993; Shah &
Oppenheimer, 2008).

We also consider computational techniques for uncovering the la-
tent attribute representations of common choice objects. We propose
that crowd-sourced keywords, tags, and other natural language de-
scriptors for choice objects on internet websites, can be considered
suitable proxies for the observable features of these objects. For a suf-
ficiently rich online dataset, it is possible to train semantic models and
learn the latent attribute representations for the objects in a choice
environment, and subsequently examine peoples’ choices between these
objects. To demonstrate this idea, we give experimental participants
naturalistic choices between different movies (Studies 1 and 4) and
between different foods (Studies 2 and 3). We attempt to predict these
choices using multiattribute choice rules applied to latent attribute
representations trained on crowd-sourced data from websites like www.
IMDB.com and www.AllRecipes.com.

2. Object representation

Imagine a choice between watching Toy Story and Star Wars. This
choice does not only involve evaluative processes for comparing the
two movies, but also semantic memory processes for representing the
movies and knowing what the movies actually are. In order to under-
stand how people may make these types of choices we need to study the
cognitive basis of the mental representations of choice objects, as well
as the ways they are integrated into evaluative choice processes during
the decision.

Although the issue of representation is not often addressed in mul-
tiattribute decision research (but see Hastie, 2001 for a discussion), it
has received much attention in others areas of cognitive psychology,
particularly semantic memory research. The relevant object and con-
cepts studied in this area are often described in terms of features that
the objects possess (Estes, 1950; Garner, 1978; Smith & Medin, 1981;
Tversky, 1972, 1977). The number of observable features possessed by
a given object can be very large, making it difficult to manipulate and
utilize feature-based representations. Thus individuals represent
common objects and concepts using latent attributes, which they re-
cover by performing a low-dimensional mapping on the observable
feature space.

Consider, for example, a child exposed to different animals and
plants (e.g., robin, salmon, rose), each with a different set of observable
features (e.g., wings, fins, thorns). By examining the distributional
structure of the features across objects, the child can uncover a set of
latent dimensions (possibly resembling categories like animal, fish,
plant, flower) that define this feature space. These dimensions, or at-
tributes, can be then be used for a variety of cognitive tasks, including
categorization, feature induction, object recognition, language use and
comprehension, similarity judgment, as well as sophisticated reasoning
and inference.

Such representations can be uncovered through techniques with
varying statistical interpretations, and techniques applied to a diverse
range of stimuli and training data. For example, multi-dimensional
scaling (Shepard, 1962, 1980) passes pairs of similarity ratings through
a matrix decomposition algorithm, resulting in the recovery of latent
attributes that best describe the structure of similarity (i.e. featural
proximity) for a given domain. Recently, Nosofsky and coauthors

Fig. 1. (a) A typical attribute-by-object matrix presentation for a choice be-
tween two phones. (b) The type of naturalistic decision studied in this paper.
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(Nosofsky, Sanders & McDaniel, 2018; Nosofsky, Sanders, Meagher &
Douglas, 2018) have used multi-dimensional scaling with great success
to uncover rich representations for natural categories.

Relatedly, distributional models of semantic memory learn word
representations through natural language. Unlike multi-dimensional
scaling these techniques do not rely on participant ratings of similarity,
and can thus be applied on a very large scale to uncover representations
for nearly any commonly used word. Some distributional approaches,
like latent semantic analysis, perform dimensionality reduction using
singular value decomposition on word-context occurrence statistics, in
order to uncover multiattribute vector representations for words
(Landauer & Dumais, 1997). Other approaches involve probabilistic
topics (Griffiths, Steyvers, & Tenenbaum, 2007) and convolution based
associative memory (Jones & Mewhort, 2007). These approaches also
use latent attribute representations for words, but rely on slightly dif-
ferent techniques for training the representations (see Jones, Willits,
Dennis, & Jones, 2015 for a recent overview).

The process of uncovering latent attributes from feature distribu-
tions can also be understood in the context of connectionist models. For
example, Rumelhart and Todd’s (1993) and Rogers and McClelland’s
(2008) model of semantic memory involves a feedforward neural net-
work with hidden layers. These hidden layers, after training through
back propagation, encode distributed representations for the various
objects and concepts. When network nodes are linear, backpropagation
has been shown to perform singular value decomposition (Saxe,
McClelland & Ganguli, 2013).

3. Latent choice attributes

It is likely that knowledge of choice objects, such as Toy Story and
Star Wars, is learnt in a similar manner to knowledge about robins,
salmon, and roses, and other non-choice objects commonly studied in
semantic memory research. Thus we would expect the dimensionality
reduction mechanisms outlined above to also play a role in choice ob-
ject representation in everyday multiattribute decision making. For the
purposes of this paper, we approximate these mechanisms with singular
value decomposition. As discussed above, SVD is the primary assump-
tion in approaches like latent semantic analysis, and is also a byproduct
of backpropagation in linear hidden-layer neural networks.

More specifically let us consider a choice domain with N total ob-
jects. Each of these objects has a set of observable features, and can be
written as a vector of these features. If there are M total unique features
in the environment, then for each object i we have xi = (xi1, xi2,… xiM),
with xij=1 or xij=0 based on whether or not feature j is present in
object i. SVD involves decomposing the matrix X = [x1, x2, … xN] to
obtain L≪M latent attributes, corresponding to the L largest singular
values of X. Using these singular values, we can represent an object i as
zi = (zi1, zi2, … ziL), with zij corresponding to the association between
the object and the jth latent attribute. Note that M can be very large in
many naturalistic choice domains, whereas L is typically much smaller.

The use of latent attributes for representing and evaluating objects
implies that our approach retains the multiattribute structure assumed
by theoretical decision making research. Thus we can take common
multiattribute decision rules and apply them directly to latent attri-
butes. For the purposes of this paper we consider six decision rules,
which are very well studied in multiattribute choice research and are
commonly used to describe behavior in multiattribute choice experi-
ments (usually experiments involving explicit attribute-by-object ma-
trix, as in Fig. 1a) (Gigerenzer & Gaissmaier, 2011; Keeney & Raiffa,
1993; Payne et al., 1993; Shah & Oppenheimer, 2008). Many of these
rules also have a linear or pseudo-linear structure giving them inter-
pretable statistical properties and making them very easy to apply to
complex object representations with a large number of attributes. Of
course there are other cognitively compelling decision rules as well, and
we discuss how such rules could be applied to describe behavior in our
experimental task at the end of this paper.

The first rule that we examine in this paper is the weighted-additive
decision rule (WAD) (Keeney & Raiffa, 1993). In the context of the la-
tent attribute structure outlined here, this rule specifies an L dimen-
sional vector of weights w = (w1, w2, … wL), and multiplies the latent
attributes for an object i by these weights, so as to obtain the utility for
the object Ui=w ∙ zi. The object with the higher utility in a choice
setting is chosen. As this decision rule involves assigning a separate
weight to each attribute it is often seen as a rational algorithm for
making multiattribute decisions.

Our second rule is the weighted pros heuristic (WP) (Huber, 1979).
This is a variant of WAD that can only be applied to binary choice. WAD
compares the attributes of objects against each other, so that for a pair
of objects i and i' it calculates sign(zi − zi’). Here we have sign(zij − zi’j)
=+1 if zij > zi’j, sign(zij − zi’j) = −1 if zij < zi’j, and sign(zij − zi’j) =
0 if zij= zi’j. After calculating sign(zi – zi’), the WP rule aggregates at-
tributes comparisons with a weighting vector w, which allows each
attribute weight to take on any positive or negative value. If w ∙ sign(zi
− zi’)> 0, WP chooses object i¸ whereas if w ∙ sign(zi − zi’)< 0, WP
chooses object i′. Intuitively, this heuristic allows weights to be flexible
across attributes but considers only whether one object is better than
the other on each attribute dimension (as in decision by sampling,
Noguchi & Stewart, in press; Stewart, Chater, & Brown, 2006).

Our third rule is the equal weights heuristic (EW), which is also seen
as a simplification of WAD (Dawes & Corrigan, 1974; Dawes, 1979). EW
also specifies an L dimensional vector of weights w = (w1, w2, … wL),
and multiplies the latent attributes for an object i by these weights, so as
to obtain the utility for the object Ui=w ∙ zi. The object with the
highest utility is chosen. However, unlike WAD, the weights in con-
sideration are equal to either +1 or −1, corresponding to whether the
attribute in consideration is desirable or undesirable. In essence this
rule gives each attribute in the decision equal importance.

The fourth rule we consider is the tallying heuristic (TAL) (also
known as the majority of confirming dimensions heuristic) which fur-
ther simplifies EW by utilizing a binary representation for each attri-
bute (Russo & Dosher, 1983). Thus prior to being multiplied by w =
(w1, w2, … wL) (where wj = +1 or wj = −1 for each j), TAL first
recodes the attributes to obtain sign(zi). Here we have sign(zij) = +1,
sign(zij) = −1, or sign(zij) = 0, depending on whether zij > 0, zij < 0,
or zij=0. Ultimately TAL can also be seen as computing a utility
Ui=w ∙ sign(zi) and choosing the object with the higher utility. In-
tuitively, this utility corresponds to the total number of good vs. bad
attributes in the object.

Our fifth rule is the lexicographic heuristic (LEX) (Fishburn, 1974).
This is the simplest multiattribute decision rule: It places all the deci-
sion weight on a single dimension. Thus it this rule can also be seen as
calculating a utility for each object Ui=w ∙ zi. However here we have
wj=1 or −1 for only one j, and wj=0 for all other j. In essence this
heuristic chooses the object with the highest (or lowest) value on a
single attribute.

Our final rule is the fast and frugal tree (FFT) (Martignon, Vitouch,
Takezawa, & Forster, 2003; Phillips, Neth, Woike & Gaissmaier, 2017).
Unlike the other decision rules, the FFT does not involve the weighted
additive utility-based evaluation of the objects. Rather FFT considers a
small number of attributes sequentially, with a decision being made if
the comparison on a given attribute satisfies an exit condition. This exit
condition is typically of the form of a difference on the attribute,
making the FFT very similar to an extension of the lexicographic
heuristic known as the lexicographic semi-order heuristic (Tversky,
1969). For example, FFT may involve the following procedure for
making decisions between two movies: If Movie 1 is sufficiently greater
than Movie 2 on Attribute 4, choose Movie 1, otherwise if Movie 1 is
sufficiently less on Attribute 7 choose Movie 2, otherwise if Movie 1 is
sufficiently greater on Attribute 2 choose Movie 1, otherwise choose
Movie 2.

With this framework we can now specify how choices, such as those
between Toy Story and Star Wars, are made. Prior to the choice, the
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decision maker would have had sufficient experience with the choice
domain (in our example, movies) so as to build latent attribute re-
presentations of some dimensionality L for the various objects in the
domain. When presented with a set of available objects at the time of
choice (Toy Story or Star Wars), our framework predicts that the deci-
sion maker would first map the objects onto their latent attributes.
These multiattribute representations would then be aggregated into
choices using one of the decision rules we have specified above. In the
case of WAD, each attribute of the two movies would be assigned a
separate continuous weight and the decision maker would choose the
object with the higher weighted additive utility; in the case of WP, the
objects would be compared against each other on every attribute di-
mension, and these binary comparisons would be aggregated with
continuous weights to determine the object with the highest weighted
pros or cons; in the case of EW the decision maker would use equal
weights (+1 for desirable latent attributes or −1 for undesirable latent
attributes) so as to give each attribute the same importance when
computing utilities; for TAL each latent attribute would be transformed
into a binary representation prior to aggregation, so as to tally the total
number of good vs. bad attributes; for LEX only a single latent attribute
would be used to calculate the relative desirabilities of the objects, and
the object with the highest or lowest value on this attribute would be
chosen; and for FFT, the decision maker would go through attributes
sequentially, and choose one of the two objects if an exit condition on
the attribute in consideration is satisfied.

4. Computational methods

In order to test our approach and illustrate its applicability we first
need to uncover the actual attribute representations that characterize
common choice objects. In related domains, such representations are
usually obtained by asking experimental participants to generate fea-
tures that they consider important in describing the meaning of a given
word (e.g., McRae, Cree, Seidenberg, & McNorgan, 2005; Vinson &
Vigliocco, 2008). However common choice domains are so vast (in-
volving thousands of features for thousands of objects) that the ex-
perimental elicitation of these feature norms may not be practical.
Fortunately, there are now numerous crowd-sourced online datasets
with detailed user-generated keywords, tags, and other descriptors for
common choice objects. These descriptors are rich and comprehensive,
and easy to obtain, and can be seen capturing the observable features
that best describe the various objects, according to individuals who
have had experience with the objects. For example, www.IMDB.com
(the Internet Movie Database) allows readers to describe each movie
using keywords. These keywords capture, amongst other things, the
movies’ key plot elements, themes, settings, aesthetics, character types,
intended audience, and literary inspirations. Using all keywords used to
describe all the movies on www.IMDB.com, we can build an approx-
imate feature-based characterization of the movie universe, and re-
present any movie in terms of the vector of features used to describe it.
We can then perform a SVD on these features to obtain latent attributes,
and apply the techniques outlined above to predict choices such as
those between Toy Story and Star Wars.

In this paper, we use two large online datasets: www.IMDB.com,
which contains user-generated keywords for thousands of popular
movies, and www.AllRecipes.com, which contains user-specified in-
gredients for thousands of dishes. We scrapped these websites in 2014,
and for each website we attempted to obtain as much information (as
many objects and associated features) as was technically feasible. We
obtained a total of 160,322 unique keywords (along with actor, actress,
and director names) for 44,971 movies for the www.IMDB.com dataset
and a total of 24,688 unique ingredients for 39,979 recipes for the
www.AllRecipes.com dataset. Using these user-generated descriptors as
our observable features, each of the N objects in each of the two da-
tasets can be written as an M-dimensional feature vector xi = (xi1, xi2,
… xiM), with xij=1 if object i (a movie or a food dish) has observable

feature j (a keyword or an ingredient), otherwise 0. An SVD on X= [x1,
x2, … xN] can be subsequently performed to obtain L≪M latent at-
tributes for the movies or foods in these datasets.

Now in our experiments we will be offering participants naturalistic
choices between various movies (Studies 1 and 4) and between various
food dishes (Studies 2 and 3). These choices will be presented in a
manner similar to Fig. 1b, that is, with only the names of the items of
the choice items (though in Study 4 we will consider an even more
naturalistic presentation format for movies). We will fit our decision
rules to choices on an individual level to test the applicability of these
decision rules, applied to recovered latent attributes, in predicting
choice behavior.

We will allow the number of underlying latent attributes, L, to vary
across participants for all heuristics except for LEX and FFT (which
involve the use of only a limited number of attributes). For a given
value of L, we will use the L latent attributes with the highest singular
values from the SVD on the corresponding dataset. Thus for L=2 we
will use the two latent attributes with the largest singular values. For
this L, each of the movies or food items in our experiment will be re-
presented by a two-dimensional vector, and we will fit the WAD, WP,
EW and TAL decision rules to participant choice-level data assuming
this underlying two-dimensional representation. Likewise, for L=3 we
will use the first two latent attributes, as well as the latent attribute
with the third largest singular value, to represent the choice items. For
this L, we will fit our WAD, WP, EW and TAL decision rules assuming
this three-dimensional representation. In order to ensure sufficient de-
grees of freedom for estimating decision weights, we will restrict L to a
maximum of L=100 (and a minimum of L=2). In essence this leads to
a total of 99 unique models for the WAD, WP, EW and TAL decision
rules for each participant, corresponding to L=2, L=3, … L=100,
with a separate set of best fitting participant level parameters for each
model. Note that our use of only the L largest singular values implies
that our latent attribute representations contain the most amount of
feature information possible for that level of dimensionality.

There are two interrelated issues in comparing the absolute and
relative predictions of our decision rules. The first pertains to the fact
that most of these decision rules can have a very large number of
parameters for large values of L. For example, for L=100, the WAD,
TAL, WP, and EW decision rules have 100 parameters each. This gives
our fits considerable flexibility and makes them vulnerable to over-
fitting. The second issue is that the number of free parameters for each
decision rule does not correspond to the flexibility of the rule. For ex-
ample, WAD, TAL, WP, and EW have a total of 100 flexible weights
when L=100, but different rules allow these weights to take on dif-
ferent values: WAD and WP permit any positive or negative weights for
the attributes; whereas EW and TAL permit only +1 and −1 as attri-
bute weights. As the number of parameters does not capture model
flexibility, model comparisons using metrics such as the Akaike
Information Criterion and the Bayes Information Criterion are in-
applicable. The same issue also holds for decision rules like FFT, which
uses only a small set of attributes, but aggregates these attributes in a
more sophisticated manner than the other weight-based decision rules.

In order to avoid these problems, we will use ten-fold cross-vali-
dation to test predictive accuracy and find the best performing decision
rule, with the best weights and the best performing value of L, for de-
scribing each participant’s choices. This involves randomly dividing
each participant’s data into ten portions, using the first nine portions
(training data) to train the models, and the tenth portion (test data) to
evaluate the models. Cross validation ensures that we avoid overfitting,
and measuring predictive accuracy on out-of-sample predictions side-
steps the issue of measuring model flexibility with the total number of
free parameters. Browne (2000) provides an introduction to cross-va-
lidation methods.

For training the WAD and WP rules (which allow the attribute
weights to take on any values) we will embed the predicted utility
differences into a logistic function, and use maximum likelihood
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estimation on the training data to uncover the best weights for each
value of L for each participant. For training the EW and TAL heuristics
(which restrict attribute weights to +1 or−1), we will individually test
each of the attributes to the see whether the attribute values (con-
tinuous values in the case of EW and binary values in the case of TAL)
correlate positively or negatively with choice on the training data. This
indicates whether each of the attributes are desirable or undesirable, so
that, when predicting the test data, we can give desirable attributes a
weight of +1 and undesirable attributes a weight of −1. Again EW and
TAL will be fit separately for each value of L for each participant.

We will restrict L=100 for LEX and FFT, as these heuristics involve
the selection of a small subset of attributes for use in the choice process.
LEX uses only a single attribute, and this attribute will be determined
based on a method similar to EW and TAL. Particularly, we will de-
termine how correlated each of the 100 attributes are with choice on
the training data, and then select the attribute with the highest absolute
correlation, giving this attribute a weight of +1 if the correlation is
positive and −1 if it is negative; all other attributes will be given a
weight of 0.

For FFT we will use an established FFT fitting toolbox introduced by
Phillips et al. (2017). This toolbox allows for FFT rules with different
“depths” (i.e. different total number of attributes used in the final
model), however we will only present results for an FFT model with a
depth of three attributes. This three-depth model is the default model in
Phillips et al.’s toolbox. We have tested the FFT model with depths of up
to 10 attributes, and have found very little changes in accuracy as depth
is increased. Note that our fits for FFT use all 100 latent attributes, and
find the model that best predicts choices. This is done using the “ifan”
algorithm, which tries many attribute orderings and thresholds for at-
tribute differences to construct a good sequence of attributes and set of
exit conditions.

For model testing we will calculate the proportion of choices in the
test data predicted accurately by each decision rule for each participant.
A choice is considered to be predicted accurately if the model selects
the object that was chosen by the participant. In the (very few) cases
where a model is unable to make a prediction (e.g. if it assigns both
objects the same utility) we assume that the model makes the choice
randomly. For decision rules that permit varying values of L, we will
use the value of L that provides the best average accuracy in predictions
on the test data.

Note that high accuracy rates obtained from the above techniques
may not be due to realistic latent attribute representations for the
choice objects. They may merely be a product of model fits that allow
for flexible weights across a large number of dimensions. Of course
cross-validation does control for this, but there is still the possibility
that decision weights fit on a randomly generated attributes for each
object (weakly) capture relational preferences for the objects, and thus
predict behavior with an above chance accuracy.

In order to control for this, we will replicate the fits for the WAD
rule with randomly generated attributes, instead of the latent attributes
obtained from an SVD on our crowd-sourced data. Particularly, for each
participant and each object offered to the participant, we will artifi-
cially create a 100-dimensional vector with each dimension randomly
and uniformly distributed in the range [0,1]. We will then perform a
10-fold cross validation procedure that examines the fits of the
weighted additive rule with flexible weights for L dimensions of the
random vectors. High accuracy for this WAD-RAND rule would indicate
that predictive accuracy stems not from the realism of the recovered
latent attribute structure but rather from the flexibility inherent in
utilizing a large number of different attribute dimensions to fit choice.
In contrast, low relative accuracy for WAD-RAND would suggest that
this is not the main cause of successful fits, and that latent attributes do
appropriately capture underlying object representations.

To ensure that differences between WAD and WAD-RAND are not
due to differences in the distribution of the attributes used to fit the two
models, we will also consider a variant of WAD-RAND, called WAD-

SCRM. This variant uses actual attribute vectors for each choice option,
but scrambles the indices in each trial prior to model fitting. Thus the
actual attribute values are meaningless, but the distribution of the at-
tributes is the same as for the attributes used to fit WAD. Again, as with
WAD-RAND, we will test WAD-SCRM with 10-fold cross validation and
flexible weights for the L dimensions of the random vectors.

5. Properties and predictions

Our use of latent attributes to predict choice implies our approach
presents a number of novel benefits relative to previous applications of
multiattribute decision rules. First, there is the issue of tractability.
Often, there are a very large number of observable features in given
choice domain. For example, as discussed above, the space of movies
that we examine in this paper contains 160,322 unique keywords, or
features, for 44,971 movies. Applying our multiattribute decision rules
to these features, rather than latent attributes, would involve learning
and applying hundreds of thousands of different tradeoffs. In contrast,
our framework, by reducing the dimensionality of the underlying at-
tribute space, facilitates a less arduous choice process.

Latent attributes are also useful for generalizing preferences. As they
encode statistical regularities in the choice environment, they can be
used to infer the desirability of novel objects with novel features which
haven’t been explicitly evaluated previously. Thus decision makers who
know that they like a movie with wizards can infer that they would like
a movie with goblins, if wizards and goblins both map on to the same
desirable latent attribute. This would be the case even if they had never
explicitly evaluated (i.e., learnt decision weights) for goblins. Of course
this ability to generalize across the feature and object space is exactly
what makes latent attributes particularly useful in non-preferential
cognitive tasks (such as categorization, feature induction, language
comprehension, etc.).

The use of latent attributes also reduces redundancy. Many ob-
servable features are highly correlated, and specifying separate decision
weights for these features is unnecessary. SVD, and related techniques,
map correlated features onto the same latent attributes, reducing the
need for separate weights for correlated features.

Also note that the WAD decision rule applied to latent attributes
uncovered through SVD can also be understood in the context of
principle components regression, a technique that involves regressing
the dependent variable on the main principle components of the ex-
planatory variables. Principle components analysis and singular value
decomposition are very closely related, implying that many of the
properties of principle components regression also extend to our fra-
mework. These include properties pertaining to multi-collinearity and
redundancy (discussed in the paragraphs above), as well as properties
involving efficiency and optimality: The estimators obtained using
principle components regressions have a lower mean squared errors
than estimators from standard linear regressions, and are the optimal
estimators (in terms of minimizing prediction error) for a large class of
regularized estimators (Draper & Smith, 1981). In fact, Davis-Stober,
Dana, and Budescu (2010) have recently proposed a linear model of
heuristic judgment utilizing principle components, which they have
shown displays similar desirable statistical properties.

Even though our use of latent attributes is relatively novel, the fact
that we aggregate these attributes with existing multiattribute decision
rules implies that we can use many of the findings in multiattribute
choice research to make predictions in our experiments. For example, in
prior work, the WAD rule has been shown to be outperformed by
heuristics like EW, in making out-of-sample predictions (Dawes, 1979;
Dawes & Corrigan, 1974; also see Gigerenzer & Gaissmaier, 2011 for a
discussion). As WAD involves inferring separate weights for each at-
tribute, it is sensitive to overfitting, and its predictions are not as robust
as those made by simpler weighting schemes. Our model tests also use
out-of-sample predictions to evaluate model accuracy. Indeed, as our
underlying attribute space is far larger than that used in typical
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multiattribute choice experiments, fits on this attribute space should be
even more vulnerable to robustness and overfitting problems. For this
reason, we would expect heuristic decision rules like EW to significantly
outperform WAD in terms of accuracy on our test data.

In addition to comparing the decision rules against each other we
will also examine the number of latent attributes used by the best fitting
variants of each of the rules. Now, prior work on multiattribute choice
has suggested that decision makers do not use that many attributes
while making decisions (see Shah & Oppenheimer, 2008 for an ex-
tensive discussion and review). However, this work has relied on choice
tasks with explicitly presented numerical attribute values, in the types
of object-by-attribute matrices shown in Fig. 1a. It is possible that the
number of attributes used by decision makers is significantly larger
when these attributes correspond to latent representations stored in
memory. Particularly, unlike exogenously provided attribute values,
which are likely processed consciously and sequentially, latent re-
presentations can be retrieved and aggregated in parallel, without
considerable cognitive oversight. Additionally, a large number of such
latent attribute representations are necessary to fully describe complex
choice objects like movies and food items. Indeed, applications of SVD
to research on semantic memory, have shown that such models require
hundreds of latent attributes to best mimic human judgments regarding
naturalistic objects and concepts (Landauer & Dumais, 1997). Thus
although prior research on multiattribute choice suggests that people
only use a few attribute values in decision tasks, we predict that the
types of naturalistic choices studied in this paper are best predicted by
models that use a much larger number of latent attributes.

6. Study 1

In Study 1 we tested whether our theoretical framework and the
computational techniques for applying this framework, predict peoples’
everyday multiattribute choices. In this study we considered choices
between movies, and we obtained latent attribute representations for
these movies using user-generated keywords on www.IMDB.com.

6.1. Method

In this study, 92 participants were recruited from the Prolific
Academic website. Participants made 200 binary choices between pairs
of popular movies. In each choice they were asked to select the movie
that they would prefer to watch. There were a total of 100 unique
movies used. These were the 100 most popular movies on www.IMDB.
com. All subjects were given the same set of choice pairs, and the choice
pairs used in the experiment were determined by randomly combining
the 100 items with each other. The choices were presented on a com-
puter screen using just the names of the movies, as in Fig. 1b. After
making the choices participants were shown the list of 100 movies and,
for each movie, were asked to indicate whether they had previously
seen the movie, and, if not, whether they recognized the movie.

We attempted to predict participant choices using latent attributes
obtained from www.IMDB.com. There are a total of 160,322 unique
keywords for 44,971 movies in this dataset. The values of the 100
movies in Study 1 on the two latent attributes with the largest singular
values are shown in Fig. 2. Fig. 2 also shows the ten movie keywords
with the largest absolute weights for these two latent attributes. These
keywords suggest that the first latent attribute corresponds to dark and
violent movies whereas the second latent attribute corresponds to
movies that are not action movies (note that all the keywords here have
negative weights). Indeed, as indicated in Fig. 2, the movie with the
highest value on attribute 1 is The Departed, the movie with the highest
value on Attribute 2 is Eternal Sunshine of the Spotless Mind, and the
movie with the lowest value on Attribute 2 is The Dark Knight Rises.

6.2. Results

6.2.1. Predictive accuracy
The accuracy rates from our analysis for the participants in Study 1

are displayed in Table 1. This table also shows the Cohen’s κ measure
for this statistic, calculated as κ = (A− R)/(1− R), where A is the
accuracy of the model and R is the accuracy of a random choice rule
(50% in binary choice).

Contrary to our predictions we found that the best performing de-
cision rule was WAD with a mean accuracy of 78% across participants
(κ = 0.56). This was followed by EW, WP, TAL, FFT, and LEX. All
decision rules outperformed the random choice rule (p < 0.001 for all
when evaluated using a paired t-test). Although the first three of these
heuristics performed almost identically, obtaining mean accuracy rates
of around 70% (κ = 0.40), FFT and LEX performed much worse, ob-
taining an accuracy of only 61.37% (κ = 0.22) and 55% (κ = 0.10)
respectively. Overall, WAD had the highest accuracy rates for 90.21%
of participants, and comparisons between each pair of decision rules
using a paired t-test on the participant level showed that WAD sig-
nificantly outperformed all five other heuristics (p < 0.001 for each of
the four comparisons). Scatter plots of the relative accuracies of WAD
compared to each of the five heuristics, for each of our participants, is
show in Fig. 3a–e.

How about WAD-RAND and WAD-SCRM? Recall that these decision
rules use randomly generated attribute values for each movie or
scrambled attribute values for each movie, and then fit choices in the
same manner as WAD to find best-performing attribute weights for
these random or scrambled attributes. We found that such rules do not
perform well at all. WAD-RAND and WAD-SCRM only achieved accu-
racy rates of 56% (κ = 0.12) and 57% (κ = 0.13) respectively
(p < 0.001 for both comparisons with WAD).

Let us also examine the dimensionality of our decision rules. We
found that the average best generalizing value of L (i.e. number of di-
mensions) for the best fitting WAD, WP, EW and TAL decision rules
across our participants was 74. Additionally, as shown in Table 1, all of
these rules used a large number of latent attributes, with participant
averages in excess of 60 latent attributes. In Fig. 4 we can see the
average accuracy of these rules as a function of L. This figure shows that
the average accuracy (aggregated across participants) is increasing in L
in a concave manner for all heuristics. Thus more latent attributes
improve model predictions in aggregate, but with diminishing returns
with each additional attribute dimension. It is likely that aggregate
model performance could have been further improved if we had con-
sidered more than 100 latent attribute dimensions.

6.2.2. Recognition
The above tests examine predictive accuracies for our decision

heuristics using all of the choice problems answered by the participants.
The implicit assumption here is that participants know about each of
the movies and are thus able to appropriately aggregate the latent at-
tributes of the movies to make their decisions. This is a reasonable
assumption, as our tests use the 100 most popular movies on www.
IMDB.com, which are some of the best-known movies in the United
States. However, a more rigorous variant of our tests would restrict the
analysis to only the movies that are recognized by participants.

Overall we found that the proportion of choice trials in which both
movies were recognized was 84% across participants. Thus it does seem
that most of the decisions studied above are decisions in which parti-
cipant have previous knowledge about the movies they are given.
Moreover, when we restricted the above tests to only choice trials in
which participants recognized both the movies that they were offered,
we found that the above pattern of results was unchanged. Again we
were able to achieve very high accuracy rates across participants, with
the best performing decision rule being the WAD rule with a large
number of latent attributes. These results are summarized in Table 2.

Our recognition data is also useful for testing the predictive power
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of the recognition heuristic. This heuristic predicts that a recognized
movie is chosen over an unrecognized movie in choices in which only
one movie is recognized. A similar heuristic has been shown to guide
behavior in a wide range of judgment and decision tasks (Gigerenzer &
Goldstein, 1996; Goldstein & Gigerenzer, 2002; Hertwig, Herzog,
Schooler, & Reimer, 2008), and it is possible that participants also used
recognition to make their decisions in our experiment. Now, on
average, the recognition heuristic was only applicable in 26 out of the
200 trials for each participant (participants either recognized both
movies or neither of movies in the remaining trials). For trials on which
the recognition heuristic could be applied, we found that this heuristic

obtained an average predictive accuracy rate of 84% (κ = 0.68) across
participants (though note that for 18 participants we could not apply
the recognition heuristic at all, as they recognized all movies). This
accuracy rate is significantly different to a random accuracy rate of 50%
(t(74) = 22.56, p < 0.001), providing strong evidence in favor of the
recognition heuristic in naturalistic movie choices.

Finally note that a similar analysis is also possible when considering
movies that have previously been seen by participants. In choices in
which one movie had been seen and the other movie hadn’t we found
that participants chose the seen movie only 20% of the time on average.
Thus, unsurprisingly, it seems that participants used an “unseen”
heuristic to make choices when such a heuristic was applicable, in-
dicating a preference for novelty.

6.2.3. Attribute weights
As a robustness test of our approach it is useful to examine the best

fitting attribute weights for decision rules like WAD. Different in-
dividuals do have different tastes for movies, and we would expect
these differences to show up in our fits to the latent attributes. If they
don’t -that is, if our fits reveal similar attribute weights for all partici-
pants- this would indicate a problem in our theoretical assumptions or
methodological approach.

In order to test for heterogeneity in attribute weights we thus fit the
WAD rule for each participant using only the first two latent attributes
for the choice objects. Additionally, as we were not concerned with
measuring out-of-sample predictions, we fit this decision rule on the
entirety of each participant’s data (i.e. on all 200 observations). A
scatter plot of the attribute weights from this model fitting exercise is
shown in Fig. 5. Recall that the two attributes in this figure correspond

Fig. 2. The values of the 100 movies in Studies 1 and 4 on the two latent attributes with the largest singular values, alongside the ten keywords with the largest
absolute weights for these two latent attributes.

Table 1
Summary of model fits for Study 1. “Accuracy” corresponds to average out-of-
sample predictive accuracy for the best-fitting decision rule. κ indicates Cohen’s
κ, which captures accuracy relative to chance. “Best” captures the percentage of
participants for which the decision rule in consideration had the best accuracy.
“# Attributes” captures the number of attributes (L) in the best-fitting decision
rule. Here averages (“Avg.”) and standard deviations (“SD”) are taken across
participants.

Accuracy
(Avg.)

Accuracy (SD) Accuracy
(Avg. κ)

Best (%) # Attributes
(Avg.)

WAD 77.65 7.59 0.55 90.21 75.70
WP 69.94 6.16 0.40 1.10 60.62
EW 70.21 5.95 0.40 1.10 68.84
TAL 68.95 5.41 0.38 2.17 63.54
FFT 61.37 6.96 0.22 5.43 –
LEX 55.18 1.72 0.10 0.00 –
WAD-RAND 56.08 3.05 0.12 – 36.09
WAD-SCRM 56.71 3.41 0.13 – 23.48
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to the two attributes in Fig. 2.
As can be seen in Fig. 5, there is significant variance in the weights

for the two attributes across participants. The average weight on

attribute 1 is−0.05 and the average weight on attribute 2 is 0.07 across
participants. The correlation between the weights for these two attri-
butes is −0.10 which is not significantly different to 0 (p=0.35).

Fig. 3. (a–e) Scatter plots of average participant accuracy rates of WAD compared to the five heuristic rules for Study 1. Here accuracy rates correspond to the
proportion (%) of out-of-sample choices predicted accurately, by the best performing version of the corresponding decision rule. Each point corresponds to a single
participant. Note that a random choice rule would obtain an accuracy rate of 50%.
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Overall, this figure suggests that different participants do have different
preferences over the latent attributes, as would be expected.

6.3. Discussion

Study 1 tested whether our proposed approach was able to describe
naturalistic choices between pairs of movies. The study involved a
choice experiment in which the available movies were presented using
just their names. The choices of participants were predicted by applying

one of six different decision rules to latent attributes recovered through
a singular value decomposition on the www.IMDB.com dataset. We
evaluated model predictions using ten-fold cross validation (performed
on the participant level).

Overall, the most accurate decision rule was the WAD rule, which
achieved an average accuracy rate of 78% and provided the best pre-
dictions for 90% of participants. This rule also outperformed WAD-
RAND and WAD-SCRM which apply WAD to randomly generated or
randomly scrambled latent attributes. An examination of the di-
mensionality of the best fitting WAD decision rules across participants,
revealed that they used a large number of latent attributes.

These results were unchanged when restricting our analysis to only
the movies that were recognized by participants. However, in settings
in which only one of the two movies were recognized, the recognition
heuristic did describe participant choices with a high accuracy. Finally,
model fits using WAD did reveal substantial heterogeneity in partici-
pant attribute weights, as would be expected in such naturalistic
choices.

These results provide a number of novel insights regarding natur-
alistic multiattribute choice. First, they conclusively show that it is
possible to predict naturalistic choices with high accuracy rates using
existing decision rules applied to latent attributes. Moreover, these la-
tent attributes do correspond to the types of representations used by
decision makers, as replacing these attributes with random vectors
leads to a significant decline in predictive power. Additionally, these
results show that, contrary to our predictions, decision heuristics such
as EW do not outperform rules like WAD, even when evaluating these
decision rules using out-of-sample accuracy rates. Finally, the best
performing decision rules always utilize a large number of latent at-
tributes, and decision rules that do not use a large number of latent
attributes, such as FFT and LEX, have relatively low accuracy rates. This
is compatible with prior work which finds that a large number of latent
dimensions are necessary for predicting behavior in semantic memory
tasks (e.g. Landauer & Dumais, 1997; see also Jones et al., 2015 for a
discussion).

7. Studies 2 and 3

In Studies 2 and 3 we wished to test for the robustness of the above
results. For this purpose, we applied our approach to a second domain:
food choice. We conducted two studies offering participants two-object
and three-object choices between various food dishes, and we predicted
these choices using latent attributes obtained from user-generated in-
gredients on www.AllRecipes.com.

7.1. Method

In Study 2, 90 participants recruited from Amazon Mechanical Turk
made 200 binary choices between various food dishes. The food dishes
were obtained from www.AllRecipes.com, and there were a total of 100
unique food dishes used in the study. These were the most popular
dishes across the different cuisines on www.AllRecipies.com. Choices in
this study were presented on the screen using just the names of the
dishes, as in Study 2. All participants were given the same set of
choices, which were generated by randomly selecting pairs of food
dishes from the list of 100 food dishes.

In Study 3, 89 participants recruited from Amazon Mechanical Turk
made 200 three-object choices between various food dishes. The dishes
used were the same as those in Study 2, and their presentation was
identical to that in Study 2 (except that each screen offered three dif-
ferent choices, instead of two). Again all participants were given the
same set of choices.

Participant data were fit using the latent attributes recovered from a
singular value decomposition (SVD) on the www.AllRecipes.com data.
There are 24,688 unique ingredients for 39,979 recipes in the www.
AllRecipes.com data. The values of the 100 food dishes used in our

Fig. 4. Average accuracy for the WAD, EW, WP, and TAL decision rules across
participants in Study 1 as a function of number of latent attributes used (L).
Error bars display± 1 standard error.

Table 2
Summary of model fits for Study 1 using only choice trials in which participants
recognized both movies.

Accuracy
(Avg.)

Accuracy (SD) Accuracy
(Avg. κ)

Best (%) # Attributes
(Avg.)

WAD 78.03 7.26 0.56 84.71 73.45
WP 70.53 5.82 0.41 1.17 60.46
EW 70.68 5.73 0.41 2.35 65.27
TAL 69.66 4.99 0.39 2.35 60.44
FFT 61.01 8.40 0.22 9.41 –
LEX 55.70 1.85 0.11 0.00 –
WAD-RAND 57.06 3.82 0.14 – 31.42
WAD-SCRM 57.22 3.75 0.14 – 30.10

Fig. 5. Best fitting attribute weights across participants for a 2-dimensional
WAD model for Study 1. Here attributes 1 and 2 correspond to the two attri-
butes in Fig. 2.
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study on the two latent attributes with the largest singular values are
shown in Fig. 6. Fig. 6 also shows the ten ingredients with the largest
absolute weights for these two latent attributes. These ingredients
suggest that the first latent attribute corresponds to baked sweet food
dishes whereas the second latent attribute corresponds to savory dishes
with an onions and garlic base. Indeed, as indicated in Fig. 6, the food
dish with the highest value on attribute 1 is Iced Pumpkin Cookies,
whereas the food dish with the highest value on attribute 2 is Turkey
and Quinoa Meatloaf.

For Study 2 we considered the six decision rules used in Study 1:
WAD, WP, EW, TAL, FFT, and LEX, as well as WAD-RAND and WAD-
SCRM. All of these rules, except for WP and FFT (which apply only to
binary choice) were also fit in Study 3. As in Study 1, model fits were
evaluated using 10-fold cross validation. Accuracy rates were calcu-
lated using the average proportion of choices in the test sample pre-
dicted correctly, across 100 training-test data splits. The baseline ac-
curacy, achieved by a random choice rule, in such an analysis is 50% for
the two-object choices in Study 2, and 33% for the three-object choices
in Study 3.

7.2. Results

7.2.1. Study 2
The accuracy rates for Study 2 are displayed in Table 3. As in Study

1, we found that the best performing decision rule was WAD with a
mean accuracy of 72% across participants (κ = 0.44). This was fol-
lowed by WP, EW, and TAL, which performed almost identically, with

accuracy rates around 66% (κ = 0.32). FFT and LEX were again much
worse, reaching an accuracy of only 59% (κ = 0.16) and 53% (κ =
0.06). All decision rules outperformed the random choice rule
(p < 0.001 for all). Overall, WAD performed the best for 79% of par-
ticipants, and comparisons between each pair of rules using a paired t-
test on the participant level showed that WAD significantly out-
performed all five other heuristics (p < 0.001 for each of the four
comparisons). A scatter plot of the relative of accuracy of WAD com-
pared to each of these heuristics, for each of our participants, is shown
in Fig. 7a–e.

Additionally, as in Study 1, we found that WAD-RAND and WAD-
SCRM achieved a much lower accuracy rate than WAD: An average of
only 57% (κ = 0.14) across participants for both (p < 0.001 relative to
WAD). Finally, we found that the average best generalizing value of L

Fig. 6. The values of the 100 food dishes in Studies 2 and 3 on the two latent attributes with the largest singular values, alongside the ten food ingredients with the
largest absolute weights for these two latent attributes.

Table 3
Summary of model fits for Study 2.

Accuracy
(Avg.)

Accuracy (SD) Accuracy
(Avg. κ)

Best (%) # Attributes
(Avg.)

WAD 72.26 7.15 0.45 78.89 75.51
WP 67.43 5.39 0.35 6.66 56.51
EW 66.94 6.20 0.34 4.44 62.40
TAL 65.60 5.56 0.31 1.11 60.19
FFT 58.56 6.40 0.16 8.89 –
LEX 53.21 0.86 0.06 0.00 –
WAD-RAND 57.02 3.83 0.14 – 33.03
WAD-SCRM 57.83 3.36 0.16 – 40.10
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Fig. 7. (a–e) Scatter plots of average participant accuracy rates of WAD compared to the five heuristic rules for Study 2. Note that a random choice rule would obtain
an accuracy rate of 50%.
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(i.e. number of dimensions) for the best fitting WAD, WP, TAL and EW
decision rules was 75. As shown in Table 3, all of these rules used a
large number of latent attributes, with averages in excess of 50 latent
attributes across participants. In Fig. 8 we can see the average accuracy
of these rules as a function of L. This figure shows that the average
accuracy (aggregated across participants) is increasing in L for all
heuristics.

7.2.2. Study 3
The accuracy rates for Study 3 are displayed in Table 4. Once again,

the best performing decision rule was WAD with a mean accuracy of
67% (κ = 0.51) across participants. This was followed by TAL, EW, and
LEX (note that we did not fit FFT and WP to this experiment as they
apply only to binary choice). All decision rules outperformed the
random choice rule (p < 0.001 for all). Overall, WAD performed the
best for 85% of participants, and comparison between each pair of rules
using a paired t-test on the participant level showed that WAD sig-
nificantly outperformed all three other heuristics (p < 0.001 for each
of the four comparisons). A scatter plot of the relative of accuracy of
WAD compared to each of the three heuristics, for each of our parti-
cipants, is shown in Fig. 9a–c.

Once again WAD-RAND and WAD-SCRM achieved a much lower
accuracy rate: An average of only 39% (κ = 0.09) and 40% (κ = 0.10)
across participants. For this reason, WAD-RAND and WAD-SCRM per-
formed significantly worse than WAD (p < 0.001 for both compar-
isons). Finally, we found that the average best generalizing value of L
(i.e. number of dimensions) for the WAD, TAL and EW decision rules
across our participants was 67. Again, all decision rules that permitted
multiple attributes used a large number of latent attributes. In Fig. 10
we can see the average accuracy of these rules as a function of L. This
figure shows that the average accuracy (aggregated across participants)
is increasing in L for all heuristics

7.3. Discussion

Despite using a different choice domain, Studies 2 and 3 fully re-
plicated the results of Study 1. Again, we were able to predict out-of-
sample choices with a very high degree of accuracy. The best per-
forming decision rule was WAD, which used a large number of latent
attributes. Additionally, the latent attributes played a critical role in
predicting choices, as the WAD-RAND and WAD-SCRM rules performed
very badly in both studies.

8. Study 4

Studies 1, 2, and 3, show that it is possible to predict choices pre-
sented in a naturalistic format (i.e. with only object names, and without
an explicit attribute-by-object matrix of numerical quantities).
However, arguably the types of multiattribute choices made by decision
makers in the real world involve more than just object names. For ex-
ample, movie choices on websites like www.netflix.com are often pre-
sented with movie posters and movie synopses. Do the results docu-
mented above emerge with this alternate (arguably richer and more
realistic) type of presentation? More precisely, can we use existing
decision rules applied to latent attributes to predict choice when choice
presentation also involves additional visual and textual information?
We tested this in Study 4, which involved choices between movies. As
in Study 1, latent attributes for the movies were obtained from www.
IMDB.com, however unlike Study 1, we used three-object choices, and
presented each choice with a movie poster and a one-line synopsis.

8.1. Method

In Study 4, 75 participants recruited from an undergraduate student
participant pool made 200 three-object choices between different mo-
vies. There were a total of 100 unique movies used. These were the 100
most popular movies on the website www.IMDB.com (Internet Movie
Data Base) that were also used in Study 1. Each participant was given
the same set of movie choices, which were constructed randomly from
our set of 100 movies. The choices were presented on the computer
screen using the names of the movies, their movie posters, and a one-
line synopsis (with movie posters and synopses also obtained from
IMDB). All movies were presented on the screen at the same time.

8.2. Results

The accuracy rates for Study 4 are displayed in Table 5. Once again,
the best performing decision rule was WAD with a mean accuracy of
64% (κ = 0.46) across participants. This was followed by TAL, EW, and
LEX (note that we did not fit FFT and WP to this experiment they apply
only to binary choice). All decision rules outperformed the random
choice rule, which generates an accuracy rate of 33.33% (p < 0.001
for all). Overall, WAD performed the best for 88% of participants, and
comparisons between each pair of rules using a paired t-test on the
participant level showed that WAD significantly outperformed all three
other heuristics (p < 0.001 for each of the four comparisons). A scatter
plot of the relative of accuracy of WAD compared to each of the three
heuristics, for each of our participants, is shown in Fig. 11a–c.

Once again WAD-RAND and WAD-SCRM achieved a much lower
accuracy rate: An average of only 41% (κ = 0.11) and 42% (κ = 0.13)
across participants. For this reason, WAD-RAND and WAD-SCRM per-
formed significantly worse than WAD (p < 0.001 for both compar-
isons). Additionally, all decision rules that permitted multiple attributes
used a large number of latent attributes. This is shown in Table 4. In
Fig. 12 we can see the average accuracy of these rules as a function of L.
This figure shows that the average accuracy (aggregated across parti-
cipants) is increasing in L for all heuristics.

Fig. 8. Average accuracy for the WAD, EW, WP, and TAL decision rules across
participants in Study 2 as a function of number of latent attributes used (L).
Error bars display± 1 standard error.

Table 4
Summary of model fits for Study 3.

Accuracy
(Avg.)

Accuracy (SD) Accuracy
(Avg. κ)

Best (%) # Attributes
(Avg.)

WAD 67.05 11.18 0.51 85.33 69.29
EW 56.47 8.07 0.35 1.33 75.29
TAL 60.20 8.75 0.40 13.33 49.27
LEX 44.96 7.59 0.17 0.00 –
WAD-RAND 38.68 2.86 0.08 – 29.83
WAD-SCRM 39.71 2.77 0.10 – 35.86
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8.3. Discussion

The results of Study 4 once again replicate the results of Study 1.
Despite utilizing a richer and more complex presentation format (with
movie posters and synopses) we were able to predict out-of-sample
choices with a very high degree of accuracy. The best performing de-
cision rule was once again WAD with a large number of latent attri-
butes. This rule also outperformed WAD-RAND and WAD-SRAM
(showing that the latent attributes played a critical role in predicting
choice).

Fig. 9. (a–c) Scatter plots of average participant accuracy rates of WAD compared to the three heuristic rules for Study 3. Note that a random choice rule would
obtain an accuracy rate of 33.33%.

Fig. 10. Average accuracy for the WAD, EW, and TAL decision rules across
participants in Study 3 as a function of number of latent attributes used (L).
Error bars display± 1 standard error.

Table 5
Summary of model fits for Study 4.

Accuracy
(Avg.)

Accuracy (SD) Accuracy
(Avg. κ)

Best (%) # Attributes
(Avg.)

WAD 63.75 10.72 0.46 88.00 78.22
EW 52.37 7.38 0.29 4.00 75.82
TAL 55.30 7.68 0.33 8.00 57.74
LEX 40.84 6.28 0.11 0.00 –
WAD-RAND 41.23 4.11 0.12 – 14.02
WAD-SCRM 42.12 5.50 0.13 – 24.96
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9. General discussion

9.1. Novel insights

9.1.1. Accuracy
In this paper we have attempted to model naturalistic multiattribute

choice. We have obtained latent attribute representations for various
everyday choice objects using user-generated object descriptors in large
online datasets and, in four studies, have predicted participant choices
between these objects by applying existing multiattribute decision rules
to the latent attribute representations. Our fits achieve high accuracy
rates, which outperform accuracy rates expected by chance and accu-
racy rates obtained from decision rules applied to randomly generated
attributes. These high accuracy rates are comparable to those in mul-
tiattribute choice studies using very tightly controlled stimuli with
numerical attributes (e.g., Fig. 1a). For example, Berkowitsch,
Scheibehenne and Rieskamp (2014) find that logit choice models
achieve accuracy rates of 73% when describing undergraduate students’
choices between triplets of cameras (with five explicitly presented at-
tributes). In Study 4, which presents analogous data involving under-
graduate students’ choices between triplets of movies, we are able to
achieve an average accuracy rate of 67%.

Fig. 11. (a–c) Scatter plots of average participant accuracy rates of WAD compared to the three heuristic rules for Study 4. Note that a random choice rule would
obtain an accuracy rate of 33.33%.

Fig. 12. Average accuracy for the WAD, EW, and TAL decision rules across
participants in Study 4 as a function of number of latent attributes used (L).
Error bars display± 1 standard error.

S. Bhatia, N. Stewart Cognition 179 (2018) 71–88

84



9.1.2. Weighted additive rule
We have found that the best performing decision rule is the

weighted additive rule (WAD), which makes the most accurate pre-
dictions for a large majority of participants in our four studies. In
contrast, decision heuristics, such as the weighted pros heuristic (WP),
equal weights heuristic (EW), tallying heuristic (TAL), fast and frugal
tree heuristic (FFT), and lexicographic heuristic (LEX) all do sig-
nificantly worse than WAD (though these heuristics do outperform
random choice). The superior fits of WAD relative to these heuristics is
contrary to prior work on multiattribute choice, which finds that simple
heuristics are often better for out-of-sample predictions (Dawes, 1979;
Dawes & Corrigan, 1974; also see Gigerenzer & Gaissmaier, 2011 for a
discussion).

Our results suggest that our participants may be using a weighted
additive multiattribute decision rule in naturalistic choice settings.
These are choice settings that people frequently encounter in the real
world and are thus settings in which people have sufficient experience.
Decision heuristics, which simplify the evaluation and aggregation of
attributes, may become less useful with practice, and thus may fail to
provide an appropriate account of naturalistic choice. Relatedly, it is
also possible that the difficulty of evaluating and aggregating latent
attributes, which are learnt through experience and stored in memory,
may be less than the difficulty of aggregating and evaluating externally
provided numerical attribute values. For this reason, decision makers
may not need to rely on heuristics in naturalistic choice as much as they
would in the types of settings typically examined in multiattribute
choice research.

9.1.3. Many attributes
We have also found that the best fitting decision rules all use a very

large number of attributes. This too is inconsistent with prior work on
multiattribute choice, which suggests that decision makers rely on only
a few attributes to make their decisions (see Shah & Oppenheimer, 2008
for an extensive discussion and review). However, the use of a large
number of latent attributes is fully consistent with applications of si-
milar techniques in semantic memory tasks involving everyday objects
and concepts (in fact the optimal dimensionality in such settings has
been argued to be around 300 – much larger than that which we permit
in this paper) (Landauer & Dumais, 1997). Everyday objects are highly
complex and require rich mental representations: It would be nearly
impossible to capture the space of movies and food items (and subse-
quently preferences over movies and food items) using only two or
three underlying attribute dimensions.

The divergence we have observed between our results and prior
results on multiattribute choice is not surprising. Multiattribute choice
is heavily task dependent and decision makers are known to use dif-
ferent strategies in different choice settings. However, this task de-
pendence does suggest that the study of naturalistic multiattribute
choice may involve different slightly decision processes than those
considered to be at play in the types of choice tasks examined in prior
work.

9.1.4. Object representation
One key theoretical contribution of this paper involves the formal

characterization of the processes involved in choosing between ev-
eryday choice objects. In doing so we extend insights from semantic
memory research to the field of multiattribute decision making. The
resulting framework attempts to describe all key aspects of the decision
process, from the object representations that are evoked, to the use of
these representations for evaluation and choice. This is in contrast to
most theories of multiattribute choice, which specify the mechanisms
involved in aggregating decision attributes but seldom attempt to de-
scribe how these attributes are represented in the minds of decision
makers.

The success of our approach in predicting naturalistic choice be-
haviors suggest that latent attribute representations are not only at play

in cognitive tasks involving words, concepts, and various non-choice
objects but are also a critical feature of preferential decision making.
There are many reasons why this would be the case. First, multi-
attribute choice objects involve a large number of observable features,
as well as systematic relationships between the features. Good decision
making involves understanding these feature relationships, and using
these relationships to make inferences about the objects. Even though
the inferences in preferential choice are primarily evaluative, knowl-
edge is used in a very similar manner as in categorization, language
comprehension, object recognition, and other related tasks. In addi-
tional, the use of latent attributes also offers a number of distinct ad-
vantages relative to the use of raw observable features. There are fewer
latent attributes than there are observable features, and for this reason,
latent attributes simplify the decision process. These attributes also
reduce redundancy in object representation, and do so in the most ef-
ficient manner possible. In fact, as outlined earlier in the paper, the
WAD rule applied to latent attributes resembles principle components
regression, which possesses a very similar set of statistical benefits.

9.2. Limitations and extensions

9.2.1. Alternate interpretations
It is important to note that our high predictive accuracy rates do not

allow us to make conclusive claims about underlying cognitive pro-
cesses. It could be the case that participants use decision rules applied
to some other mental representations. Our latent attribute-based fits
may merely learn to mimic these choice processes, thereby generating
accurate predictions. Unlike existing paradigms in experimental deci-
sion making research, we do not explicitly provide choice attributes to
participants. Although this is a desirable feature of our research, it also
implies that that we are unable to restrict or control what participants
know about the available choice objects.

Despite this limitation, we believe that the use of radically different
representations by participants is unlikely. There is extensive research
on semantic memory that supports the type of analysis performed in
this paper. This research is supported by various psychological mea-
sures, including participant responses in similarity judgment tasks and
free association tasks (again see Jones et al., 2015 for a review). In
future work, it would be useful to combine such semantic tasks with
multiattribute decision making, to jointly model both the semantic and
the evaluative components of the decision.

Note that it could also be the case that decision makers are using the
latent attributes from our analysis, but are doing so in a manner that
differs from the assumptions made in this paper. For example, it could
be the case that decision maker further project the latent attributes onto
a smaller representational space (perhaps using a non-linear transfor-
mation). They then could aggregate these reduced representations ei-
ther with the WAD rule, or with various heuristics. Such alternative
models could be easily tested using the approach outlined in this paper,
and this is a useful topic for future work.

9.2.2. Beyond singular value decomposition
Another extension to this paper could involve more sophisticated

techniques than singular value decomposition, for uncovering latent
attributes. For example, there are approaches in semantic memory re-
search that utilize probabilistic topics rather than linear matrix de-
compositions (e.g., Griffiths et al., 2007). Such approaches are likely to
provide more intuitive latent attributes (that map on more directly to
the attributes used by decision makers), and also give a rational inter-
pretation to the latent attribute-based decision.

It may also be the case that the representations of choice objects
depend not only on feature co-occurrence, but also on the reward
structure of the domain in consideration. Individuals may, for example,
learn object representations that best predict rewards, rather those that
best predict feature occurrence. If this is the case then it would be ne-
cessary to train models of object representation alongside models of
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evaluation and choice (rather than training the former separately, as is
done in this paper). This could be accomplished using neural networks
with backpropagation from a preference (reward) layer to an object
representation layer. Supervised topic models (Blei & Mcauliffe, 2008)
may also facilitate the learning of such representations. Relatedly, it
would be useful to test for the effect of underlying reward structure on
the use of object representations in non-choice tasks such as categor-
ization and similarity judgment.

9.2.3. Participant heterogeneity in representation
In many ways, reward-dependent object representations would lead

to participant level heterogeneity in attribute structures. Individuals
who like a certain type of choice object may also have more fine
grained representations of that choice object. More generally, different
individuals are likely to vary in their attribute representations due to
variation in experience and personal history. This type of heterogeneity
has been ignored it this paper. This has been due primarily to practical
concerns: Currently it is very difficult to uncover all the objects in a
given choice domain that a participant has encountered before (and it is
even harder to uncover the idiosyncratic rewards the participant has
associated with the objects). Thus, for tractability, we assume that all
our participants have the same latent attribute representations, which
are recoverable by analyzing large online datasets. Future work should
attempt to move beyond this assumption, and use richer, individual-
specific sources of data to uncover individual-specific choice object
representations. A promising approach to this problem has been pro-
vided by Sanborn, Griffiths & Shiffrin (2010) and such techniques could
be applied to the choice domains considered in this paper.

9.2.4. Domain-general representations
It would also be useful to uncover representations that are not re-

stricted to a particular choice domain. The models used in this paper are
specifically trained for movies or foods and cannot be applied outside of
these two areas. In contrast, the ideal model would have representa-
tions for an immense number of choice objects, spanning multiple dif-
ferent domains, and would thus be able to characterize a large portion
of the decision maker’s choice universe. Scholars of decision making
could use such a model to study nearly any choice offered to the de-
cision maker. In recent work, Bhatia (2017, in press) has outlined one
such model for the study of associative judgment and associative de-
cision making. By using core ideas in semantic memory research, as
well as large online datasets, both the goals and the methods of this
work resemble those outlined in this paper. Future work could attempt
a synthesis of the two approaches, so as to formulate a cohesive general
model of naturalistic multiattribute choice.

9.2.5. Cognitive choice models
Future work should also attempt to implement more sophisticated

choice theories, ones that are able to predict not only choice prob-
abilities, but also their relationship with the choice set, reference
points, the feasibility of deferral, decision time, decision confidence,
and other relevant variables (e.g., Bhatia, 2013; Bhatia & Mullett, 2016;
Glöckner, Hilbig, & Jekel, 2014; Holyoak & Simon, 1999; Payne et al.,
1993; Roe, Busemeyer, & Townsend, 2001; Noguchi & Stewart, in press;
Trueblood, Brown, & Heathcote, 2014; Usher & McClelland, 2004).
There are many such models that have been proposed for multiattribute
choice, and with methodological advances in the computational mod-
elling of decision making, we may be able to apply these more so-
phisticated models to the types of naturalistic decisions studied in this
paper.

9.2.6. Model similarity
It would also be valuable to not just fit various decision models and

evaluate out-of-sample predictions, but also to analyze the similarity of
model performance on choice data. One approach to this type of ana-
lysis has been suggested by Broomell, Budescu and Por (2011). This

approach involves making pairwise comparisons between models based
on the proportion of choice data for which they make identical pre-
dictions. In the context of this paper, such an approach could illustrate
when and where the WAD decision rule outperforms the other heur-
istics, which could in turn yield novel predictions regarding the types of
choice environments where heuristics make the most accurate predic-
tions. When applied to the fifteen different pairs of models considered
in this paper, such an approach could also be used to uncover the latent
structure of model similarity. Variants of such an analysis could also
involve global model analysis (Pitt, Kim, Navarro & Myung, 2006) and
model landscaping (Navarro, Pitt, & Myung, 2004). Such techniques
also provide more sophisticated and intuitive controls for model flex-
ibility, than the cross validation procedure adopted in the current
paper.

9.2.7. Multiattribute choice effects
Thus far, multiattribute decision making is almost always studied

using highly stylized stimuli, presented to decision makers in explicit
object-attribute matrices (e.g., Fig. 1a). The reason for this design
choice is that formal theories of multiattribute choice need quantifiable
information about the attributes in order to be tested and compared.
Many everyday decisions, however, do not involve explicitly presented
attributes. Rather the attribute information used by decision makers is
stored in their minds after having been learnt through experience (and
additionally is far richer and more complex than information that could
be presented in an explicit object-attribute matrix). Our approach
provides one way of uncovering this attribute information. With the use
of our recovered attributes, it is possible to test the robustness of
documented multiattribute choice effects in more realistic choice set-
tings. As discussed above, multiattribute choice is heavily task depen-
dent, and it is possible that behaviors in these choice settings diverge
from the types of behaviors observed using current designs. Indeed,
some scholars have suggested that prominent decoy effects (which in-
volve a change in choice probabilities as irrelevant choice objects are
added or removed from the choice set) do not emerge in naturalistic
settings where information is not presented in object-attribute matrices
(Frederick et al., 2014). This is a topic of considerable debate in the
field (see Huber, Payne, & Puto, 2014, Simonson, 2014; and Yang &
Lynn, 2014), and in future work we hope to use our approach to help
address this disagreement.

9.2.8. Memory vs. stimuli-based decisions
One way in which this can be done involves insights from research

on memory-based vs. stimuli-based decisions (Lynch et al., 1988; Lynch
& Srull, 1982; Rottenstreich et al., 2006). The most common experi-
mental paradigm in this area makes decision makers memorize attri-
bute information and then retrieve this information from memory while
making multiattribute choices. These decisions are compared against
decisions made when attribute information is presented explicitly
during the choice. As an inversion of the approach in the current paper,
it may be possible to adopt the memory-based vs. stimuli-based para-
digm, and present some the object-feature information (e.g. food in-
gredients or movie keywords) explicitly on the screen. Choices with this
explicit information presentation would then be compared to the types
of choices elicited by our current experimental approach. Of course,
given the richness of naturalistic objects like movies and food items
(which are composed of thousands of features), it is not immediately
clear how to present feature information in a manner that can be easily
read and evaluated by participants. Future work should attempt to re-
fine this paradigm so as to better understand the difference between
naturalistic memory-based and stimulus-based multiattribute choices.

A variant of the design outlined above can also be used to study
multiattribute decisions in which explicit attribute information ac-
companies object names with rich learnt representations. For example,
in many food choice scenarios, linguistic descriptions of the food items
are often presented alongside quantitative nutritional data (e.g. number
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of calories). Likewise, in many consumer decisions, verbal object de-
scriptions (e.g. brand names) are often accompanied by quantitative
attribute information (e.g. memory and processing speed). How are
these two types of information aggregated? Although we have argued
that the experiments in this paper capture naturalistic multiattribute
choices, it is clear that most everyday choices involve both quantitative
and linguistic information. Understanding how these choices are made
is necessary for fully characterizing multiattribute decision making.

9.2.9. Prior information
Another extension to the paradigm presented in this paper involves

the analysis of the information that people have prior to experiencing
the choice objects. In this paper we have intentionally limited our ex-
periments to settings involving popular movies and food items – objects
which decision makers have previously experienced and for which they
have rich learnt representations. This allows us to conveniently assume
that our uncovered latent attributes match those of participants. Yet
most multiattribute choices do not involve prior experience with the
objects in consideration; instead, decision makers have to evaluate
novel choice objects based on limited information. For example, when
choosing a movie to watch, people typically consider new movies that
they have never seen before, and evaluate these new movies based on
reviews or trailers. It should not be difficult to extend the approach
presented in this paper to predict such choices. Instead of learning la-
tent attributes from keywords listed on websites like www.IMDB.com,
it may instead be possible to learn these attributes from the content of
movie reviews, or the words used in a movie trailer. More generally, the
approach presented in this paper is not limited to large online datasets
like www.IMDB.com or www.AllRecipes.com. This approach can be
applied to nearly any information source used by participants to form
mental representations of choice objects.

9.2.10. Free responses
Our approach also permits the analysis of a new type of decision

problem: One involving completely free responses without the pre-
sentation of actual choice stimuli. Decision research is currently limited
to settings in which participants are provided with explicit choice sets
to choose between or to evaluate (e.g., “Do you want to watch Movie A
or Movie B?”). However, everyday choices often involve individuals
having to retrieve feasible choice objects from their memory, from a
very large list of different objects they could possibly choose (e.g.,
“What movie do you want to watch?”). Our methods, which provide
techniques for uncovering attribute representations for nearly all pos-
sible movies and food items, can be combined with existing memory
models, to study choices in these free response settings.

9.3. Real world choice

A notable benefit of our approach is the ability to extend the psy-
chological analysis of multiattribute choice beyond the laboratory and
predict real world choice data. Besides being necessary for evaluating
the external validity of psychological theories, such an analysis has
numerous commercial applications. For example, recommendation
systems have, over the past decade, transformed online commerce and
entertainment. The primary goal of recommendation systems is to
suggest, for consumers, the types of goods, movies, books, restaurants,
and other objects they would most like to consume. Although this is a
natural area to apply existing psychological insights regarding decision
making, most current approaches to building recommendation systems
do not use these insights. More generally, the growth of the internet has
led to increased choices for individuals and increased data regarding
these choices, which in turn has stimulated the need for companies to
quantitatively predict peoples’ choices. The psychological study of de-
cision making, which for the past seventy years has developed a de-
tailed understanding of how these choices are made, has much to
contribute to these applications, and our techniques provide one

approach to translating decision making research for these purposes
(see Goldstone & Lupyan, 2016; Griffiths, 2015; and Jones, 2016 for an
extensive discussion).

As existing multiattribute theories cannot be applied to real world
decisions, they also cannot be used to improve these decisions. Our
approach can however shed light on the ways in which people represent
and aggregate the attributes of real objects. This opens up an avenue for
the application of behavioral interventions to decisions involving these
objects. Consider, for example, food choice, which is one of the two
choice domains studied in this paper. An analysis of food choice has
implications for public health, and our approach makes it possible to
examine how individuals represent food items and how these re-
presentations influence choice. This can, in turn, allow for the study of
socio-economic and situational determinants of food choice, and for the
development of appropriate incentives, decision aids, and nudges to
improve food decision making.

Ultimately, by combining existing theories of multiattribute choice
with rigorous analysis of large-scale data, this paper has proposed tools
to capture the large number of important decisions made in the real-
world, that are not currently within the scope of decision making re-
search. This has the potential to significantly expand the theoretical,
descriptive, and practical scope of decision making research.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.cognition.2018.05.025.
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